You can download the evaluation toolkit and sample results in two ways.
First : You can download the evaluation toolkit(WATB_Benchmark_toolkit.rar) and tracking results(WATB_tracking_results.rar) in Google Drive: Second : You can download the evaluation toolkit(WATB_Benchmark_toolkit.rar) and tracking results(WATB_tracking_results.rar) in Baidu Netdisk:In order to evaluate existing trackers’ performance on WATB, we tested 38 tracking methods including CF and deep learning based trackers For CF trackers and deep trackers,we select the tracking methods with hand-crafted features and the recent popular Siamese trackers. Details are shown in the table below:
Trackers | Description | Language | Trackers | Description | Language |
---|---|---|---|---|---|
Stark | ICCV21 | Python | CSK | ECCV12 | Matlab |
STMTrack | CVPR21 | Python | KCF | PAMI14 | Matlab |
TransT | CVPR21 | Python | SAMF | ECCVW14 | Matlab |
Dimp50 | ICCV19 | Python | DSST | BMVA14 | Matlab |
Dimp18 | ICCV19 | Python | fDSST | PAMI16 | Matlab |
SiamCAR | CVPR20 | Python | CF2 | ICCV15 | Matlab |
SiamAttn | CVPR20 | Python | SRDCF | ICCV15 | Matlab |
ATOM | CVPR19 | Python | Staple | CVPR16 | Matlab |
SiamRPN++ | CVPR19 | Python | CFWCR | ICCVW17 | Matlab |
SiamRPN | CVPR18 | Python | BACF | ICCV17 | Matlab |
SiamMask | CVPR19 | Python | ECO | CVPR17 | Matlab |
SiamGAT | CVPR21 | Python | STRCF | CVPR18 | Matlab |
SiamBAN | CVPR20 | Python | SKSCF | PAMI18 | Matlab |
HiFT | ICCV21 | Python | DSARCF | TIP19 | Matlab |
SiamFC | ECCV16 | Python | LADCF | TIP19 | Matlab |
ACSDCF_HC | IJCV21 | Matlab | ASRCF | CVPR19 | Matlab |
MRCF | TIE22 | Matlab | GFSDCF | ICCV19 | Matlab |
MSCF | ICRA21 | Matlab | ARCF | ICCV19 | Matlab |
AutoTrack | CVPR20 | Matlab | DRCF | TGRS20 | Matlab |
We extensively tested 38 trackers on WATB. Each tracker is run individually without any modification and re-training. We employ the precision measure,normalized precision measure and success measure for all the tested trackers and draw corresponding plots to compare their performance which are shown in figure below.
We divided the WATB into 8 categories according to species, by the way, evaluated these 8 categories as follows.
species | precision | normalized precision | success measures |
---|---|---|---|
Bird | |||
Fish | |||
Mammals | |||
Arthropod | |||
Amphibian | |||
Reptile | |||
Mollusc | |||
Coelenterate |
In order to detect the strengths and limitations of existing trackers on wild animal tracking, we provide attribute based evaluation under the 13 challenging attributes of WATB.
attribute | precision | normalized precision | success measures |
---|---|---|---|
IV | |||
OPR | |||
IPR | |||
DEF | |||
FM | |||
SV | |||
CM | |||
OV | |||
POC | |||
FOC | |||
LR | |||
SOB | |||
MB |
The normalized precision scores of the evaluated trackers over 13 attributes are given in following table. The results of deep trackers and CF trackers are separated and listed in different parts of the table. For deep trackers, the best three results are shown in. red, blue and green, respectively, while the best three CF trackers are shown in italic style using similar colors to deep trackers.
Trackers | SV | OPR | POC | FM | DEF | MB | CM | LR | SO | FOC | IPR | IV | OV |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Stark | 0.567 | 0.544 | 0.531 | 0.510 | 0.635 | 0.517 | 0.524 | 0.528 | 0.537 | 0.418 | 0.557 | 0.503 | 0.524 |
STMTrack | 0.535 | 0.535 | 0.488 | 0.433 | 0.598 | 0.451 | 0.428 | 0.496 | 0.559 | 0.346 | 0.538 | 0.510 | 0.456 |
TransT | 0.532 | 0.522 | 0.494 | 0.460 | 0.590 | 0.459 | 0.453 | 0.476 | 0.548 | 0.371 | 0.538 | 0.483 | 0.484 |
Dimp50 | 0.507 | 0.492 | 0.471 | 0.444 | 0.572 | 0.445 | 0.437 | 0.480 | 0.527 | 0.349 | 0.506 | 0.469 | 0.469 |
SiamAttn | 0.501 | 0.495 | 0.464 | 0.402 | 0.536 | 0.426 | 0.409 | 0.422 | 0.566 | 0.336 | 0.516 | 0.464 | 0.423 |
SiamBAN | 0.496 | 0.496 | 0.456 | 0.403 | 0.534 | 0.432 | 0.402 | 0.421 | 0.551 | 0.322 | 0.488 | 0.446 | 0.439 |
Diamp18 | 0.495 | 0.487 | 0.463 | 0.427 | 0.546 | 0.450 | 0.414 | 0.466 | 0.510 | 0.347 | 0.534 | 0.459 | 0.449 |
ATOM | 0.473 | 0.457 | 0.433 | 0.408 | 0.516 | 0.425 | 0.427 | 0.427 | 0.520 | 0.333 | 0.505 | 0.467 | 0.426 |
SiamRPN++ | 0.457 | 0.457 | 0.428 | 0.363 | 0.493 | 0.400 | 0.373 | 0.407 | 0.512 | 0.305 | 0.471 | 0.452 | 0.394 |
SiamCAR | 0.455 | 0.466 | 0.428 | 0.371 | 0.486 | 0.411 | 0.356 | 0.416 | 0.534 | 0.311 | 0.492 | 0.409 | 0.419 |
SiamRPN | 0.435 | 0.440 | 0.417 | 0.356 | 0.466 | 0.380 | 0.355 | 0.382 | 0.497 | 0.310 | 0.451 | 0.432 | 0.404 |
SiamMask | 0.430 | 0.436 | 0.395 | 0.341 | 0.470 | 0.365 | 0.344 | 0.393 | 0.532 | 0.277 | 0.458 | 0.397 | 0.376 |
SiamFC | 0.359 | 0.339 | 0.326 | 0.309 | 0.376 | 0.297 | 0.288 | 0.341 | 0.430 | 0.241 | 0.390 | 0.350 | 0.326 |
SiamGAT | 0.312 | 0.308 | 0.283 | 0.252 | 0.350 | 0.245 | 0.279 | 0.259 | 0.330 | 0.197 | 0.372 | 0.298 | 0.255 |
HiFT | 0.251 | 0.246 | 0.224 | 0.195 | 0.278 | 0.193 | 0.232 | 0.209 | 0.293 | 0.142 | 0.305 | 0.265 | 0.193 |
GFSDCF | 0.417 | 0.417 | 0.395 | 0.356 | 0.427 | 0.357 | 0.342 | 0.382 | 0.494 | 0.299 | 0.454 | 0.424 | 0.357 |
ASRCF | 0.329 | 0.326 | 0.318 | 0.258 | 0.336 | 0.275 | 0.243 | 0.303 | 0.431 | 0.236 | 0.364 | 0.343 | 0.307 |
CF2 | 0.304 | 0.295 | 0.275 | 0.257 | 0.310 | 0.267 | 0.249 | 0.265 | 0.372 | 0.216 | 0.317 | 0.277 | 0.288 |
ARCF | 0.296 | 0.286 | 0.274 | 0.249 | 0.296 | 0.270 | 0.238 | 0.273 | 0.376 | 0.210 | 0.321 | 0.268 | 0.291 |
ECO | 0.295 | 0.270 | 0.268 | 0.257 | 0.274 | 0.249 | 0.233 | 0.277 | 0.336 | 0.218 | 0.322 | 0.281 | 0.280 |
LADCF | 0.292 | 0.273 | 0.271 | 0.247 | 0.295 | 0.259 | 0.228 | 0.271 | 0.361 | 0.205 | 0.326 | 0.282 | 0.281 |
STRCF | 0.286 | 0.275 | 0.268 | 0.240 | 0.284 | 0.240 | 0.220 | 0.255 | 0.369 | 0.213 | 0.288 | 0.302 | 0.240 |
MRCF | 0.286 | 0.272 | 0.271 | 0.237 | 0.287 | 0.257 | 0.226 | 0.267 | 0.367 | 0.211 | 0.310 | 0.269 | 0.277 |
MSCF | 0.285 | 0.279 | 0.271 | 0.234 | 0.290 | 0.248 | 0.236 | 0.254 | 0.373 | 0.207 | 0.297 | 0.294 | 0.264 |
CFWCR | 0.281 | 0.268 | 0.253 | 0.239 | 0.274 | 0.251 | 0.236 | 0.268 | 0.342 | 0.206 | 0.277 | 0.298 | 0.249 |
ACSDCF_HC | 0.275 | 0.272 | 0.256 | 0.223 | 0.279 | 0.226 | 0.216 | 0.257 | 0.381 | 0.210 | 0.310 | 0.285 | 0.228 |
AutoTrack | 0.274 | 0.264 | 0.252 | 0.224 | 0.266 | 0.240 | 0.218 | 0.247 | 0.349 | 0.196 | 0.287 | 0.258 | 0.271 |
BACF | 0.272 | 0.270 | 0.254 | 0.210 | 0.259 | 0.243 | 0.194 | 0.250 | 0.375 | 0.202 | 0.248 | 0.285 | 0.264 |
Staple | 0.265 | 0.271 | 0.252 | 0.207 | 0.267 | 0.228 | 0.217 | 0.237 | 0.368 | 0.184 | 0.304 | 0.283 | 0.247 |
DRCF | 0.257 | 0.247 | 0.255 | 0.209 | 0.247 | 0.226 | 0.190 | 0.230 | 0.318 | 0.187 | 0.254 | 0.211 | 0.254 |
SAMF | 0.244 | 0.242 | 0.232 | 0.186 | 0.232 | 0.216 | 0.198 | 0.200 | 0.332 | 0.176 | 0.252 | 0.236 | 0.245 |
SRDCF | 0.229 | 0.220 | 0.215 | 0.201 | 0.210 | 0.204 | 0.197 | 0.206 | 0.295 | 0.177 | 0.215 | 0.231 | 0.231 |
DSST | 0.224 | 0.225 | 0.213 | 0.179 | 0.225 | 0.182 | 0.172 | 0.213 | 0.317 | 0.180 | 0.213 | 0.226 | 0.193 |
DSARCF | 0.222 | 0.219 | 0.214 | 0.190 | 0.201 | 0.204 | 0.182 | 0.196 | 0.293 | 0.174 | 0.203 | 0.214 | 0.230 |
KCF | 0.212 | 0.209 | 0.206 | 0.180 | 0.208 | 0.180 | 0.173 | 0.187 | 0.305 | 0.171 | 0.244 | 0.220 | 0.197 |
SKSCF | 0.209 | 0.215 | 0.206 | 0.176 | 0.207 | 0.184 | 0.188 | 0.171 | 0.285 | 0.167 | 0.217 | 0.224 | 0.196 |
fDSST | 0.205 | 0.198 | 0.203 | 0.168 | 0.184 | 0.169 | 0.170 | 0.173 | 0.271 | 0.168 | 0.206 | 0.225 | 0.202 |
CSK | 0.164 | 0.166 | 0.162 | 0.137 | 0.157 | 0.135 | 0.136 | 0.171 | 0.251 | 0.133 | 0.179 | 0.187 | 0.172 |